3.298 \(\int \frac{x^{7/2}}{\sqrt{a x^2+b x^5}} \, dx\)

Optimal. Leaf size=237 \[ \frac{\sqrt{a x^2+b x^5}}{2 b \sqrt{x}}-\frac{a^{2/3} x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \text{EllipticF}\left (\cos ^{-1}\left (\frac{\sqrt [3]{a}+\left (1-\sqrt{3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x}\right ),\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{4 \sqrt [4]{3} b \sqrt{\frac{\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt{a x^2+b x^5}} \]

[Out]

Sqrt[a*x^2 + b*x^5]/(2*b*Sqrt[x]) - (a^(2/3)*x^(3/2)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x +
 b^(2/3)*x^2)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(
1/3) + (1 + Sqrt[3])*b^(1/3)*x)], (2 + Sqrt[3])/4])/(4*3^(1/4)*b*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/
3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*Sqrt[a*x^2 + b*x^5])

________________________________________________________________________________________

Rubi [A]  time = 0.225232, antiderivative size = 237, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2024, 2032, 329, 225} \[ \frac{\sqrt{a x^2+b x^5}}{2 b \sqrt{x}}-\frac{a^{2/3} x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt{3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{4 \sqrt [4]{3} b \sqrt{\frac{\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt{a x^2+b x^5}} \]

Antiderivative was successfully verified.

[In]

Int[x^(7/2)/Sqrt[a*x^2 + b*x^5],x]

[Out]

Sqrt[a*x^2 + b*x^5]/(2*b*Sqrt[x]) - (a^(2/3)*x^(3/2)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x +
 b^(2/3)*x^2)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^(
1/3) + (1 + Sqrt[3])*b^(1/3)*x)], (2 + Sqrt[3])/4])/(4*3^(1/4)*b*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))/(a^(1/
3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*Sqrt[a*x^2 + b*x^5])

Rule 2024

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n +
 1)*(a*x^j + b*x^n)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^(n - j)*(m + j*p - n + j + 1))/(b*(m + n*p + 1)
), Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j
, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p + 1 - n + j, 0] && NeQ[m + n*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(x*(s
+ r*x^2)*Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2
)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4])/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[(r*x^2*(s + r*x^2))/(s + (1
+ Sqrt[3])*r*x^2)^2]), x]] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{x^{7/2}}{\sqrt{a x^2+b x^5}} \, dx &=\frac{\sqrt{a x^2+b x^5}}{2 b \sqrt{x}}-\frac{a \int \frac{\sqrt{x}}{\sqrt{a x^2+b x^5}} \, dx}{4 b}\\ &=\frac{\sqrt{a x^2+b x^5}}{2 b \sqrt{x}}-\frac{\left (a x \sqrt{a+b x^3}\right ) \int \frac{1}{\sqrt{x} \sqrt{a+b x^3}} \, dx}{4 b \sqrt{a x^2+b x^5}}\\ &=\frac{\sqrt{a x^2+b x^5}}{2 b \sqrt{x}}-\frac{\left (a x \sqrt{a+b x^3}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^6}} \, dx,x,\sqrt{x}\right )}{2 b \sqrt{a x^2+b x^5}}\\ &=\frac{\sqrt{a x^2+b x^5}}{2 b \sqrt{x}}-\frac{a^{2/3} x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac{\sqrt [3]{a}+\left (1-\sqrt{3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{4 \sqrt [4]{3} b \sqrt{\frac{\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt{3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt{a x^2+b x^5}}\\ \end{align*}

Mathematica [C]  time = 0.0249058, size = 70, normalized size = 0.3 \[ \frac{x^{3/2} \left (-a \sqrt{\frac{b x^3}{a}+1} \, _2F_1\left (\frac{1}{6},\frac{1}{2};\frac{7}{6};-\frac{b x^3}{a}\right )+a+b x^3\right )}{2 b \sqrt{x^2 \left (a+b x^3\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(7/2)/Sqrt[a*x^2 + b*x^5],x]

[Out]

(x^(3/2)*(a + b*x^3 - a*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/6, 1/2, 7/6, -((b*x^3)/a)]))/(2*b*Sqrt[x^2*(a
+ b*x^3)])

________________________________________________________________________________________

Maple [C]  time = 0.032, size = 1793, normalized size = 7.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/(b*x^5+a*x^2)^(1/2),x)

[Out]

1/2/(b*x^5+a*x^2)^(1/2)*x^(3/2)*(b*x^3+a)/b^2/(-b^2*a)^(1/3)*(2*I*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-b
^2*a)^(1/3)))^(1/2)*((I*3^(1/2)*(-b^2*a)^(1/3)+2*b*x+(-b^2*a)^(1/3))/(1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2
)*((I*3^(1/2)*(-b^2*a)^(1/3)-2*b*x-(-b^2*a)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*EllipticF((-(I*
3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1
/2)-3))^(1/2))*3^(1/2)*x^2*a*b^2-4*I*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*((I*3^(1/
2)*(-b^2*a)^(1/3)+2*b*x+(-b^2*a)^(1/3))/(1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*((I*3^(1/2)*(-b^2*a)^(1/3)-
2*b*x-(-b^2*a)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))
/(-b*x+(-b^2*a)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b^2*a)^(1/3)
*3^(1/2)*x*a*b+2*I*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*((I*3^(1/2)*(-b^2*a)^(1/3)+
2*b*x+(-b^2*a)^(1/3))/(1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*((I*3^(1/2)*(-b^2*a)^(1/3)-2*b*x-(-b^2*a)^(1/
3))/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1
/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b^2*a)^(2/3)*3^(1/2)*a-2*(-(I*
3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*((I*3^(1/2)*(-b^2*a)^(1/3)+2*b*x+(-b^2*a)^(1/3))/(1
+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*((I*3^(1/2)*(-b^2*a)^(1/3)-2*b*x-(-b^2*a)^(1/3))/(-1+I*3^(1/2))/(-b*x
+(-b^2*a)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2),((I*3^(1/2)+
3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*x^2*a*b^2+4*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-b
^2*a)^(1/3)))^(1/2)*((I*3^(1/2)*(-b^2*a)^(1/3)+2*b*x+(-b^2*a)^(1/3))/(1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2
)*((I*3^(1/2)*(-b^2*a)^(1/3)-2*b*x-(-b^2*a)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*EllipticF((-(I*
3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1
/2)-3))^(1/2))*(-b^2*a)^(1/3)*x*a*b-2*(-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*((I*3^(1
/2)*(-b^2*a)^(1/3)+2*b*x+(-b^2*a)^(1/3))/(1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*((I*3^(1/2)*(-b^2*a)^(1/3)
-2*b*x-(-b^2*a)^(1/3))/(-1+I*3^(1/2))/(-b*x+(-b^2*a)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*b/(-1+I*3^(1/2)
)/(-b*x+(-b^2*a)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b^2*a)^(2/3
)*a+I*((b*x^3+a)*x)^(1/2)*(1/b^2*x*(-b*x+(-b^2*a)^(1/3))*(I*3^(1/2)*(-b^2*a)^(1/3)+2*b*x+(-b^2*a)^(1/3))*(I*3^
(1/2)*(-b^2*a)^(1/3)-2*b*x-(-b^2*a)^(1/3)))^(1/2)*(-b^2*a)^(1/3)*3^(1/2)*b-3*((b*x^3+a)*x)^(1/2)*b*(-b^2*a)^(1
/3)*(1/b^2*x*(-b*x+(-b^2*a)^(1/3))*(I*3^(1/2)*(-b^2*a)^(1/3)+2*b*x+(-b^2*a)^(1/3))*(I*3^(1/2)*(-b^2*a)^(1/3)-2
*b*x-(-b^2*a)^(1/3)))^(1/2))/((b*x^3+a)*x)^(1/2)/(I*3^(1/2)-3)/(1/b^2*x*(-b*x+(-b^2*a)^(1/3))*(I*3^(1/2)*(-b^2
*a)^(1/3)+2*b*x+(-b^2*a)^(1/3))*(I*3^(1/2)*(-b^2*a)^(1/3)-2*b*x-(-b^2*a)^(1/3)))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{\frac{7}{2}}}{\sqrt{b x^{5} + a x^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^(7/2)/sqrt(b*x^5 + a*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{5} + a x^{2}} x^{\frac{3}{2}}}{b x^{3} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^5 + a*x^2)*x^(3/2)/(b*x^3 + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{\frac{7}{2}}}{\sqrt{x^{2} \left (a + b x^{3}\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(7/2)/(b*x**5+a*x**2)**(1/2),x)

[Out]

Integral(x**(7/2)/sqrt(x**2*(a + b*x**3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{\frac{7}{2}}}{\sqrt{b x^{5} + a x^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate(x^(7/2)/sqrt(b*x^5 + a*x^2), x)